OctoPROBER standby current test

20140325_205624

Testing the standby current draw for the OctoPROBER. It uses a soft power switch and a real time clock which draws power when the device is turned “off”. Fortunately the power consumed is very small. At a battery voltage around 4V the standby current is under 20uA. With a 2000mAh battery we have a standby lifetime of 100000 hours or over 11 years! Don’t really have to worry about the OctoPROBER loosing its clock time anytime soon.

Pinheck Board REV 5 Prototypes Complete

20140310_135623

Last week I finished the prototypes for the REV 5 Pinheck Board and shipped them to Spooky Pinball. I built 5 boards for testing to make sure this is the final revision before starting the full on production run. These will be in the machines Spooky is taking to the Midwest Gaming Classic. I will also be there encase anyone has questions about the board set.

1393892494599

Second prototype board I finished.

20140327_231107

Test jigs to make sure the boards are made correctly. I am working on a better test jig for the production run that will be fully automated to help speed up the testing process.

20140327_231426

Boards ready to ship!

OctoPROBER REV2 Released

BjCqx71CMAAm7eU

Above is the REV 1 of the OctoPROBER. This revision fixed allot of the issues I had with programming the propeller and the propeller resetting when the USB plug was plugged in. To fix the USB resetting the propeller when being plugged in I disconnected the reset line off the FT230X (USB chip) from the reset signal on the propeller. This breaks being able to program the propeller as it needs to upload code directly after start up. To fix this problem the code has a menu option that will reset the propeller if it sees the USB reset line so the user can control if the USB resets the propeller or not.

To enable ease of first time programing or encase the firmware gets borked there is a switch that manually connects the FT230X reset signal to the propeller reset signal.

Layout

Rev 2 of the OctoPROBER I decided to do away with the MAX31855 chips. They are very expensive ($5 a piece) and not very accurate (+-2C). Instead I am using 2 MCP3424 18-bit ADCs to do the thermocouple readings. To perform cold junction readings I am using 8 AT30TSE752 board temperature sensors. This should provide +-0.5C accuracy and the ability to use any thermocouple type.

Pinheck Pinball System REV5 Production Update!

20140226_152320

These are the first 5 test boards to make sure the changes from the REV4 board we done correctly. Since I am pretty sure this is the final revision I ordered the boards on FR4 170TG and ENIG finish. 170TG is higher temperature rated substrate which allows for lead free reflow without scotching the board. ENIG finish is a higher quality finish for the pads over HASL as it tends to be flatter and more consistent which is nicer on the pick and place machines.

20140227_184814

Pinheck board on the pick and place. Currently the machine is only setup to place the passive parts which are the resistors, capacitors, and LEDs. This consists almost 90% of the board parts.

20140227_195333

After the pick and place I manually placed the IC chips and placed it on the intake side of our reflow oven.

20140227_200041

This is what the board looks like after coming out of the reflow. There are a couple bridges on the ICs so I will need to tweak my automatic paste dispenser settings.

20140227_231236

Finished soldering the through hole parts. Wishing I had a selective soldering machine about now!